Question Number	Acceptable Answers	Reject	Mark
1 (a)	$\begin{aligned} & 2 \mathrm{Na}+\mathrm{CH}_{2} \mathrm{OHCH}_{2} \mathrm{OH}^{\longrightarrow} \mathrm{CH}_{2} \mathrm{O}^{(-)} \mathrm{Na}^{(+)} \mathrm{CH}_{2} \mathrm{O}^{(-)} \mathrm{Na}^{(+)} \\ & +2 \\ & \text { This equation scores (2) marks } \end{aligned}$ Accept multiples and $\left(\mathrm{CH}_{2} \mathrm{OH}\right)_{2}$ and $\left(\mathrm{CH}_{2} \mathrm{O}^{(-)} \mathrm{Na}^{(+)}\right)_{2}$ Organic product (Charges not needed) Balancing and the rest ALLOW for one mark: $\begin{aligned} & \mathrm{Na}+\mathrm{CH}_{2} \mathrm{OHCH}_{2} \mathrm{OH} \longrightarrow \mathrm{CH}_{2} \mathrm{OHCH}_{2} \mathrm{O}^{(-)} \mathrm{Na}^{(+)} \\ & +1 / 22 \end{aligned}$ Accept multiples	$2 \mathrm{CH}_{2} \mathrm{O}^{(-)} \mathrm{Na}^{(+)}$ $\mathrm{CH}_{2} \mathrm{Na}^{(+)} \mathrm{O}^{(-)} \mathrm{CH}_{2} \mathrm{Na}^{(+)} \mathrm{O}^{(-)}$ Reject bond from C to Na	2

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 (b)}$	Remove thermometer / still-head / leave the top of condenser open (1) Place condenser directly on top of flask/in (1) vertical position ALLOW correct diagram for 2 marks	Sealed apparatus, e.g. wi thermometer in the top	$\mathbf{2}$
	IGNORE comments on use of electric heaters, changing concentration of reagents		

Question	Acceptable Answers	Reject	Mark
1 (c)	ALLOW the OH bond to be displayed ALLOW displayed formula as 'working out' ALLOW any orientation IGNORE bonds of different lengths or incorrect bond angles	 Just 'Structural formula' Bond from carbon clearly to the H of the OH	1

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1}$ (d)	Both have OH / hydroxyl groups	Hydroxide ions	$\mathbf{1}$
OR Both would produce steamy / misty /white and fumes /gas (of HCl)	White smoke Just 'both produce HCl' Both give the same products'		

Question Number	Acceptable Answers	Reject	Mark
1 (e)(i)	(Strong) Peak at 1750-1700 (cm^{-1}) Peak(s) (either or both) at $2900-2700\left(\mathrm{~cm}^{-1}\right)$ (1) ALLOW these if merged	$\begin{align*} & \text { peak at 3300-2500 } \tag{1}\\ & \left(\mathrm{cm}^{-1}\right) \\ & \text { peak at 3750-3200 } \\ & \left(\mathrm{cm}^{-1}\right) \end{align*}$	2

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1}$	(Unreacted) ethanol $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} /$ /displayed /skeletal IGNORE references to O-H bonding	Molecular formula Just "O-H in alcohol" Ethane-1,2-diol	$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1}$	$\mathrm{COOH}^{+} \mathrm{CO}_{2} \mathrm{H}^{+}$	COOH^{-}or any other (e)(iii) ALLOWula with - charge	$\mathbf{1}$
	ALLOW $\mathrm{CH}_{3} \mathrm{COO}^{+}$ ALLOW $\mathrm{CH}_{2} \mathrm{COOH}^{+}$	$\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}^{+}$ $\mathrm{CH}_{3} \mathrm{COOH}^{+}$ $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{+}$	
	ALLOW the + sign wherever it is seen Also allow correct displayed, semi-displayed or structural formulae		

Question Number	Acceptable Answers	Reject	Mark
1 (f)(i)	One mark for curly arrow from hydroxide ion; (This arrow can be drawn from anywhere on the hydroxide ion) One mark for curly arrow from $\mathrm{C}-\mathrm{Br}$ bond Correct products; If SN1 is shown, then intermediate with positive charge must be shown after loss of Br , followed by attack by hydroxide. This mechanism can score all 3 marks	Carbon with ∂ - Bond to H of OH	3

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1}(\mathbf{f) (i i)}$	Mechanism: Nucleophilic	(1)	
Type: Substitution			
ALLOW either way round	(1)	Elimination	
	Just S S Scores (1)	SN with elimination or other type of reaction	2
	ALLOW nucleophile and phonetic spelling	Homolytic fission	

Question Number	Acceptable Answers	Reject	Mark
1 (g)	$\mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{Br}^{-}(\mathrm{aq}) \longrightarrow \mathrm{AgBr}(\mathrm{s})$ Species State symbols (1) ALLOW one mark for chemical equation with state symbols rather than ionic equation, e.g. $\mathrm{AgNO}_{3}(\mathrm{aq})+\mathrm{NaBr}(\mathrm{aq}) \longrightarrow \mathrm{AgBr}(\mathrm{s})$ $+\mathrm{NaN}_{3}(\mathrm{aq})$	Spectator ions included	2

Question Number	Acceptable Answers	Reject	Mark
1 (h	Both silver chloride and silver bromide dissolve / give colourless solution in conc. ammonia If the solid doesn't dissolve in dilute ammonia then it is silver bromide OR Add conc. sulfuric acid to the (solid) silver bromide and get red-orange bromine gas	Alternative tests which don't work eg displacement of bromine, use of organic solvent, leave in sunlight to see if bromine forms, add conc. sulfuric acid to halide solution.	2

Question Number	Acceptable Answers	Reject	Mark
$\begin{array}{\|l\|} \hline 2 \\ (a)(i) \end{array}$	X = 2-chloro-2-methylpropane ALLOW $\mathbf{X}=2,2$-chloromethylpropane $\mathbf{X}=2$-methyl-2-chloropropane $\mathbf{X}=2,2$-methylchloropropane $\mathbf{X}=2$-chloromethylpropane (1) $\mathbf{Z}=2$-methylpropan-2-ol (1) ALLOW methylpropan-2-ol ALLOW propane for propan IGNORE omission of (or extra) commas and hyphens IGNORE spaces	2-methylchloropropane Hydroxy for -ol	2

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2}$ (a)(ii)		Cl	Any other type of structure

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2}$			
(a)(iii)	Tertiary ALLOW recognisable abbreviations: $3^{y} / 30$		$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2}$	Nucleophilic	(1)	
(b)(i)	Substitution	(1)	
			$\mathrm{S}_{N} 2$

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2}$	Movement (ALLOW (b)(ii) Transfer/donation)/ start and finish positions of an electron pair ALLOW two electrons for pair	electrons	$\mathbf{1}$
IGNORE bonded/unbonded for electrons IGNORE heterolytic bond breaking and bond formation			

Question Number	Acceptable Answers	Reject	Mark
$\begin{align*} & 2 \\ & (b)(i i i) \tag{1} \end{align*}$	These marks are stand alone Trigonal (ALLOW triangular) planar/ planar with bond angles of $120{ }^{\circ}$ 3 bond pairs (no lone pairs) of electrons ALLOW 3 pairs of electrons around the central atom/ carbon Arranged at minimum repulsion ALLOW maximum separation / distance apart IGNORE references to the positive charge	Bonds or 'areas of electron density' for pairs Just '3 pairs of electrons' Just 'repel' Repel as much as possible	3

Question Number	Acceptable Answers	Reject	Mark
$\begin{aligned} & 2 \\ & \text { (b) (iv) } \end{aligned}$	(Type of reaction:) elimination ALLOW dehydrohalogenation IGNORE nucleophilic Product: 2-methylpropene ALLOW methylpropene 2-methylprop-1-ene Methylprop-1-ene any correct formula e.g. $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CCH}_{2}$ ALLOW $\mathrm{CH}_{3} \mathrm{C}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2}$ (1) If a displayed formula or part displayed formula is used, all the atoms must be shown.	2-methylprop-2-ene methylprop-2-ene	2
Question Number	Acceptable Answers	Reject	Mark
$\begin{aligned} & 2 \\ & (c)(i) \end{aligned}$	If a displayed formula or part displayed formula is used, all the atoms must be shown. If a carbon is clearly shown bonded to the H in OH , penalise once in (c) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{3}$ ALLOW OR		1

Question Number	Acceptable Answers	Reject	Mark
$\begin{align*} & 2 \tag{1}\\ & (c)(i i) \end{align*}$	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$ ALLOW $\begin{equation*} \left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}_{2} \mathrm{OH} \tag{1} \end{equation*}$ ALLOW OR If 2 correct carboxylic acids are shown, 1 out of 2	Aldehydes	2

Question Number	Acceptable Answers	Reject	Mark
3 (a) (i)	Allow all dots / crosses, combinations of dots, crosses and other symbols like triangles Allow extra inner electrons around carbon and / or oxygen	Missing symbols Missing non-bonding electrons	1

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{3}$ (a) (ii)	Each mark is independent of the next unless the bond angle is greater than 119° $109^{\circ} / 109.5^{\circ}$ (1) Minimum repulsion / maximum separation (between four bond pairs of electrons / bonds) (1)	Four bond pairs give tetrahedral shape	$\mathbf{4}$
	$104^{\circ}-105^{\circ}$ (1) (Two) Ione pairs / non-bonding pairs (of electrons) repel more (than bonding pairs)/ repel a lot (1)		

Question Number	Acceptable Answers	Reject	Mark
3 (a) (iii)	 Correct atoms in the hydrogen bond ($\mathrm{O}-\mathrm{H}^{\circ} \mathrm{O}$) (1) Allow CH_{3} groups not displayed, correct ethanol formulae. Hydrogen bond can be shown as dots horizontal or vertical dashes. If it is a bond-like line it must be labelled. Second mark dependent on correct atoms involved. O-H...O in straight line (within small tolerance) and 180° bond angle given in the correct place (1)	Hydrogen bond between methanol and water does not score	2

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{3}$ (b) (i)	Any two from: Bubbles/ fizzing / effervescence (of gas) forming (1) Sodium / solid disappearing / dissolving (to form a clear colourless solution) (1) White solid / precipitate forming (1)	Vigorous reaction	$\mathbf{2}$

Question Number	Acceptable Answers	Reject	Mark
3 (b) (ii)	$\mathrm{CH}_{3} \mathrm{OH}+\mathrm{Na} \rightarrow \mathrm{CH}_{3} \mathrm{O}^{(-)} \mathrm{Na}^{(+)}+1 / 2 \mathrm{H}_{2}$ Allow multiples, NaOCH_{3} as product, ethanol as $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH} / \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ with sodium ethoxide as product, Ignore state symbols and charges	Na^{+}as reactant $\mathrm{CH}_{3} \mathrm{O}-\mathrm{Na}$ $\mathrm{CH}_{3} \mathrm{NaO}$ or $\mathrm{NaCH}_{3} \mathrm{O}$	$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{3 ~ (c) ~ (i) ~}$	$\mathrm{Na}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} / \mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} /$ $\mathrm{Sodium} /$ potassium dichromate((VI)) (1) Allow recognisable spelling of potassium and dichromate If name and formula given, both must be correct. $\mathrm{H}_{2} \mathrm{SO}_{4} /$ (Dilute / concentrated) sulfuric acid (1) Second mark dependent on recognisably correct oxidizing agent Allow acidified / H^{+}and dichromate((VI)) / $\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$ for 1 mark Allow potassium manganate((VII)) and dilute sulfuric acid for 1 mark	Other oxidation numbers Potassium/ sodium dichromate(VI) ions hydrochloric, nitric, phosphoric	$\mathbf{2}$
Other oxidation			
numbers			

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{3}$ (c) (ii)	Round-bottomed/ pear shaped flask with heat Still head (1)	Reflux apparatus or reflux followed by distillation scores 0 Conical flask Open still head	$\mathbf{2}$
Delivery tube and exit above/ in (cooled) collection vessel (1) A condenser may be included Sealed apparatus (max. 1)			

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{3}$ (c) (iii)	Mark independently (Permanent) dipole dipole/ permanent dipole (forces) in ethanal (1) Ethanal higher because both compounds have (similar) London / van der Waals'/ etc forces OR no (permanent) dipole dipole / permanent dipole (forces) in propane OR propane (only) has London / van der Waals' / etc forces (1)	Ethanal has hydrogen bonds loses first mark only	$\mathbf{2}$

Question Number	Acceptable Answers	Reject	Mark
4(a)(i)	Effervescence / fizzing / bubbles (of colourless gas) (1) Mixture gets hot (1) White solid (ALLOW ppt) produced / sodium dissolves or disappears (1) Any two Ignore inferences unless incorrect	$\mathbf{2}$	

Question Number	Acceptable Answers	Reject	Mark
4(a)(ii)	$\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{ONa} / \mathrm{C}_{4} \mathrm{H}_{9} \mathrm{O}^{-} \mathrm{Na}^{+} /$structural or displayed formulae of any of the isomers: $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{ONa}$	Structures showing a covalent bond between O and Na	$\mathbf{1}$
	$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}_{2} \mathrm{ONa}$		
$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CONa}$			
$\mathrm{CH}_{3} \mathrm{CH}(\mathrm{ONa}) \mathrm{CH}_{2} \mathrm{CH}_{3}$	$\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{NaO} / \mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Na}^{+} \mathrm{O}^{-}$		

Question Number	Acceptable Answers	Reject	Mark
4(b)	 Do not penalise undisplayed CH_{3} or $\mathrm{O}-\mathrm{H}$ (2-)methylpropan-2-ol(1) Marks are stand alone	Missing hydrogen atoms Skeletal formula	2

Question Number	Acceptable Answers	Reject	Mark
4(c)	$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}_{2} \mathrm{OH}$ OR correct displayed formula OR semi-displayed formula ALLOW $\mathrm{CH}_{3} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{OH}$ ALLOW missing bracket round CH_{3} in this version Ignore names	Missing hydrogen atoms Skeletal formula	1

Question Number	Acceptable Answers	Reject	Mark
4(d)(i)	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{3}(1)$ OR correct displayed formula OR semi-displayed formula Do not penalise missing bracket round OH Ignore names	Missing hydrogen atoms Skeletal formula	$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
4(d)(ii)	O—H absorption / peak in 2-methylpropanoic acid / No O—H absorption / peak in Q ALLOW C—O absorption / peak in 2-methylpropanoic acid / No C—O absorption / peak in Q Ignore references to broad or sharp peaks and to the fingerprint region	$\mathbf{1}$	

Question Number	Acceptable Answers	Reject	Mark
4(e)	$\mathrm{PCl}_{5} / \mathrm{PCl}_{3} /$ conc $\mathrm{HCl} / \mathrm{SOCl}_{2} /$ mixture of $\mathrm{NaCl}+\mathrm{H}_{2} \mathrm{SO}_{4}$ / mixture of $\mathrm{KCl}+\mathrm{H}_{2} \mathrm{SO}_{4}$ Ignore reference to concentration of $\mathrm{H}_{2} \mathrm{SO}_{4}$ OR Names	Hydrogen chloride Conc hydrogen chloride HCl $\mathrm{PCl}_{5}(\mathrm{aq}), \mathrm{PCl}_{3}(\mathrm{aq})$, $\mathrm{SOCl}_{2}(\mathrm{aq})$	1

Question Number	Correct Answer	Reject	Mark
4(f)(i)	White precipitate/ white solid		$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
4(f)(ii) QWC	Water has 2 hydrogen bonds per molecule (on average) whereas ethanol only has 1 (1) ALLOW Water has more hydrogen bonds (per molecule) than ethanol Needs more energy to break H bonds in water (so less soluble) / H bonding (ALLOW intermolecular forces) stronger in water (1) Second mark dependent on first. Ignore references to London, dispersion and van der Waals forces	$\mathbf{2}$	

