Question Number	Acceptable Answers	Reject	Mark
1 (a)	2Na + CH ₂ OHCH ₂ OH CH ₂ O(-)Na(+)CH ₂ O(-)Na(+) + 2 This equation scores (2) marks Accept multiples and (CH ₂ OH) ₂ and (CH ₂ O(-)Na(+)) ₂ Organic product (Charges not needed) (1)	2 CH ₂ O ⁽⁻⁾ Na ⁽⁺⁾ CH ₂ Na ⁽⁺⁾ O ⁽⁻⁾ CH ₂ Na ⁽⁺⁾ O ⁽⁻⁾ Reject bond from C to Na	2
	Balancing and the rest ALLOW for one mark: Na + CH ₂ OHCH ₂ OH CH ₂ OHCH ₂ O ⁽⁻⁾ Na ⁽⁺⁾ + ½ 2 Accept multiples		

Question Number	Acceptable Answers	Reject	Mark
1 (b)	Remove thermometer / still-head / leave the top of condenser open (1) Place condenser directly on top of flask/in vertical position (1) ALLOW correct diagram for 2 marks IGNORE comments on use of electric heaters, changing concentration of reagents	Sealed apparatus, e.g. wi thermometer in the top	2

Question Number	Acceptable Answers	Reject	Mark
1 (c)	ALLOW the OH bond to be displayed ALLOW displayed formula as 'working out' ALLOW any orientation IGNORE bonds of different lengths or incorrect bond angles	Displayed formula O C HO OH Just 'Structural formula' Bond from carbon clearly to the H of the OH	1

Question Number	Acceptable Answers	Reject	Mark
1 (d)	Both have OH / hydroxyl groups OR	Hydroxide ions White smoke	1
	Both would produce steamy / misty /white and fumes /gas (of HCl)	Just 'both produce HCI' Both give the same products'	

Question	Acceptable Answers	Reject	Mark
Number			
1 (e)(i)	(Strong) Peak at 1750-1700 (cm ⁻¹) (1) Peak(s) (either or both) at 2900-2700(cm ⁻¹)	peak at 3300-2500 (cm ⁻¹) peak at 3750-3200 (cm ⁻¹)	2
	(1) ALLOW these if merged	(CIII)	

Question	Acceptable Answers	Reject	Mark
Number			
1	(Unreacted) ethanol	Molecular formula	1
(e)(ii)	C ₂ H ₅ OH /displayed /skeletal	Just "O-H in	
		alcohol"	
	IGNORE references to O-H bonding	Ethane-1,2-diol	
	_		

Question Number	Acceptable Answers	Reject	Mark
1	COOH ⁺	COOH⁻ or	1
(e) (iii)	ALLOW CO₂H ⁺	any other	
	ALLOW CH₃COO ⁺	formula	
	ALLOW CH ₂ COOH ⁺	with –	
		charge	
	ALLOW the + sign wherever it is seen		
	Also allow correct displayed, semi-displayed or	CH ₃ CO ₂ H ⁺	
	structural formulae	CH₃COOH ⁺	
		$C_2H_3O_2^+$	

Question	Acceptable Answers	Reject	Mark
Number			
1 (f)(i)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		3
	One mark for curly arrow from hydroxide ion; (This arrow can be drawn from anywhere on the hydroxide ion) (1)	Carbon with ∂-	
	One mark for curly arrow from C-Br bond (1)		
	Correct products; (1)	Bond to H of OH	
	If SN1 is shown, then intermediate with positive charge must be shown after loss of Br, followed by attack by hydroxide. This mechanism can score all 3 marks		

Question Number	Acceptable Answers		Reject	Mark
1 (f)(ii)	Mechanism: Nucleophilic	(1)		2
	Type: Substitution ALLOW either way round	(1)	Elimination	
	Just S _N scores (1)		SN with elimination or other type of reaction	
	ALLOW nucleophile and phonetic spelling	g		
	IGNORE Heterolytic fission		Homolytic fission	

Question Number	Acceptable Answers	Reject	Mark
1 (g)	Ag ⁺ (aq) + Br ⁻ (aq) → AgBr(s) Species (1) State symbols (1) ALLOW one mark for chemical equation with state symbols rather than ionic equation, e.g. AgNO ₃ (aq) + NaBr(aq) → AgBr(s) + NaN ₃ (aq)	Spectator ions included	2

Question Number	Acceptable Answers	Reject	Mark
1 (h	Both silver chloride and silver bromide dissolve /give colourless solution in conc. ammonia (1) If the solid doesn't dissolve in dilute ammonia then it is silver bromide OR Add conc. sulfuric acid to the (solid) silver bromide and get red-orange bromine gas (1)	Alternative tests which don't work eg displacement of bromine, use of organic solvent, leave in sunlight to see if bromine forms, add conc. sulfuric acid to halide solution.	2

Question Number	Acceptable Answers	Reject	Mark
2 (a)(i)	 X = 2-chloro-2-methylpropane ALLOW X = 2,2-chloromethylpropane X = 2-methyl-2-chloropropane X = 2,2-methylchloropropane X = 2-chloromethylpropane (1) 	2-methylchloropropane	2
	 Z = 2-methylpropan-2-ol (1) ALLOW methylpropan-2-ol ALLOW propane for propan IGNORE omission of (or extra) commas and hyphens IGNORE spaces 	Hydroxy for -ol	

Question Number	Acceptable Answers	Reject	Mark
2 (a)(ii)	Cl	Any other type of structure	1
	ALLOW any angles		

Question Number	Acceptable Answers	Reject	Mark
2	Tertiary		1
(a)(iii)	ALLOW recognisable abbreviations:		
	3 ^y /3°		

Question Number	Acceptable Answers		Reject	Mark
2 (b)(i)	Nucleophilic	(1)		2
	Substitution	(1)		
	S _N 1 scores 1/2		S _N 2	

Question Number	Acceptable Answers	Reject	Mark
2 (b)(ii)	Movement (ALLOW Transfer/donation)/ start and finish positions of an electron pair ALLOW two electrons for pair IGNORE bonded/unbonded for electrons	electrons	1
	IGNORE heterolytic bond breaking and bond formation		

Question Number	Acceptable Answers	Reject	Mark
2 (b)(iii)	These marks are stand alone		3
	Trigonal (ALLOW triangular) planar/ planar with bond angles of 120° (1)		
	3 bond pairs (no lone pairs) of electrons (1)	Bonds or 'areas of electron density' for pairs	
	ALLOW 3 pairs of electrons around the central atom/carbon	Just '3 pairs of electrons'	
	Arranged at minimum repulsion (1)	Just 'repel'	
	ALLOW maximum separation / distance apart	Repel as much as possible	
	IGNORE references to the positive charge		

Question Number	Acceptable Answers	Reject	Mark
	(Type of reaction:) elimination ALLOW dehydrohalogenation IGNORE nucleophilic Product: 2-methylpropene ALLOW methylpropene 2-methylprop-1-ene Methylprop-1-ene any correct formula e.g. (CH ₃) ₂ CCH ₂ ALLOW CH ₃ C(CH ₃)CH ₂ H CH ₂ CH	2-methylprop-2-ene methylprop-2-ene	Mark 2
	CH ₃ H CH ₃ (1) If a displayed formula or part displayed formula is used, all the atoms must be shown.		

Question Number	Acceptable Answers	Reject	Mark
2 (c)(i)	If a displayed formula or part displayed formula is used, all the atoms must be shown. If a carbon is <i>clearly</i> shown bonded to the H in OH, penalise once in (c) CH ₃ CH ₂ CH(OH)CH ₃ ALLOW OH OR H H H C C H H H H OH H		1

Question Number	Acceptable Answers		Reject	Mark
2 (c)(ii)	CH ₃ CH ₂ CH ₂ CH ₂ OH ALLOW OH Or H H H H C C C C C OH H H H H H H H H	1)	Aldehydes	2
	(CH ₃) ₂ CHCH ₂ OH (1 ALLOW OH OR H H C C C OH H H If 2 correct carboxylic acids are shown 1 out of 2			

Question Number	Acceptable Answers	Reject	Mark
3 (a) (i)	H .x xx H.x C.x O .xH .x xx H Allow all dots / crosses, combinations of dots, crosses and other symbols like triangles Allow extra inner electrons around carbon and /or oxygen	Missing symbols Missing non-bonding electrons	1

Question	Acceptable Answers	Reject	Mark
Number			
3 (a) (ii)	Each mark is independent of the next unless the bond angle is greater than 119°		4
	109°/109.5° (1)	Four bond pairs give	
	Minimum repulsion / maximum separation (between four bond pairs of electrons / bonds) (1)	tetrahedral shape	
	104° – 105° (1)		
	(Two) lone pairs / non-bonding pairs (of electrons) repel more (than bonding pairs)/repel a lot (1)		

Question Number	Acceptable Answers	Reject	Mark
3 (a) (iii)	H 180° H H C C O H O C C H H H H H Correct atoms in the hydrogen bond (O H O) (1) Allow CH ₃ groups not displayed, correct ethanol formulae. Hydrogen bond can be shown as dots horizontal or vertical dashes. If it is a bond-like line it must be labelled. Second mark dependent on correct atoms involved. O-HO in straight line (within small tolerance) and 180° bond angle given in the correct place (1)	Hydrogen bond between methanol and water does not score	2

Question	Acceptable Answers	Reject	Mark
Number			
3 (b) (i)	Any two from:		2
	Bubbles/ fizzing / effervescence (of gas) forming (1)	Vigorous reaction	
	Sodium /solid disappearing /dissolving (to form a clear colourless solution) (1)	White solution/fumes	
	White solid /precipitate forming (1)	form	
		Clear colourless solution forms alone	

Question Number	Acceptable Answers	Reject	Mark
3 (b) (ii)	$CH_3OH + Na \rightarrow CH_3O^{(-)}Na^{(+)} + \frac{1}{2}H_2$ Allow multiples,	Na⁺ as reactant CH₃O—Na	1
	$NaOCH_3$ as product, ethanol as CH_3CH_2OH/C_2H_5OH with sodium ethoxide as product,	CH₃NaO or NaCH₃O	
	Ignore state symbols and charges		

Question Number	Acceptable Answers	Reject	Mark
3 (c) (i)	Na ₂ Cr ₂ O ₇ / K ₂ Cr ₂ O ₇ / Sodium / potassium dichromate((VI)) (1) Allow recognisable spelling of potassium and dichromate	Other oxidation numbers Potassium/sodium dichromate(VI) ions	2
	If name and formula given, both must be correct. H ₂ SO ₄ / (Dilute / concentrated) sulfuric acid (1) Second mark dependent on recognisably correct oxidizing agent Allow acidified / H ⁺ and dichromate((VI)) / Cr ₂ O ₇ ²⁻	Other acids e.g. hydrochloric, nitric, phosphoric	
	for 1 mark Allow potassium manganate((VII)) and dilute sulfuric acid for 1 mark	Other oxidation numbers	

Question Number	Acceptable Answers	Reject	Mark
3 (c) (ii)		Reflux apparatus or reflux followed by distillation scores 0	2
	Round-bottomed/pear shaped flask with heat Still head (1)	Conical flask Open still head	
	Delivery tube and exit above/in (cooled) collection vessel (1)		
	A condenser may be included Sealed apparatus (max. 1)		

Question Number	Acceptable Answers	Reject	Mark
3 (c) (iii)	Mark independently (Permanent) dipole dipole/permanent dipole (forces) in ethanal (1) Ethanal higher because both compounds have (similar) London /van der Waals'/etc forces OR no (permanent) dipole dipole /permanent dipole (forces) in propane OR propane (only) has London /van der Waals' /etc	Ethanal has hydrogen bonds loses first mark only	2
	both compounds have (similar) London /van der Waals'/etc forces OR no (permanent) dipole dipole /permanent dipole (forces) in propane OR		

Question	Acceptable Answers	Reject	Mark
Number			
4(a)(i)	Effervescence / fizzing / bubbles (of colourless gas) (1) Mixture gets hot (1) White solid (ALLOW ppt) produced / sodium dissolves or disappears (1) Any two Ignore inferences unless incorrect		2

Question Number	Acceptable Answers	Reject	Mark
4(a)(ii)	C ₄ H ₉ ONa / C ₄ H ₉ O ⁻ Na ⁺ /structural or displayed formulae of any of the isomers: CH ₃ CH ₂ CH ₂ CNa (CH ₃) ₂ CHCH ₂ ONa (CH ₃) ₃ CONa CH ₃ CH(ONa)CH ₂ CH ₃	Structures showing a covalent bond between O and Na C ₄ H ₉ NaO / C ₄ H ₉ Na ⁺ O ⁻	1

Question Number	Acceptable Answers	Reject	Mark
4(b)	H H C H H H H H C C C C C H H O H Do not penalise undisplayed CH ₃ or O-H (1) (2-)methylpropan-2-ol(1) Marks are stand alone	Missing hydrogen atoms Skeletal formula	2

Question Number	Acceptable Answers	Reject	Mark
4(c)	(CH ₃) ₂ CHCH ₂ OH OR correct displayed formula OR semi-displayed formula ALLOW CH ₃ CH(CH ₃)CH ₂ OH ALLOW missing bracket round CH ₃ in this version Ignore names	Missing hydrogen atoms Skeletal formula	1

Question	Acceptable Answers	Reject	Mark
Number			
4(d)(i)	CH ₃ CH ₂ CH(OH)CH ₃ (1) OR correct displayed formula OR semi-displayed formula Do not penalise missing bracket round OH Ignore names	Missing hydrogen atoms Skeletal formula	1

Question Number	Acceptable Answers	Reject	Mark
4(d)(ii)	O—H absorption / peak in 2-methylpropanoic acid / No O—H absorption / peak in Q		1
	ALLOW C—O absorption / peak in 2-methylpropanoic acid / No C—O absorption / peak in Q Ignore references to broad or sharp peaks and to the fingerprint region		

Question Number	Acceptable Answers	Reject	Mark
4(e)	PCI ₅ / PCI ₃ / conc HCI / SOCI ₂ / mixture of NaCI + H ₂ SO ₄ / mixture of KCI + H ₂ SO ₄ Ignore reference to concentration of H ₂ SO ₄ OR Names	Hydrogen chloride Conc hydrogen chloride HCI PCI ₅ (aq), PCI ₃ (aq), SOCI ₂ (aq)	1

Question Number	Correct Answer	Reject	Mark
4(f)(i)	White precipitate/ white solid		1

Question Number	Acceptable Answers	Reject	Mark
4(f)(ii) QWC	Water has 2 hydrogen bonds per molecule (on average) whereas ethanol only has 1 (1) ALLOW Water has more hydrogen bonds (per molecule) than ethanol Needs more energy to break H bonds in water (so less soluble) / H bonding (ALLOW intermolecular forces) stronger in water (1) Second mark dependent on first. Ignore references to London, dispersion and van der Waals forces		2